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3. ICA for Linear instantaneous 

mixtures

Second order ?

Contrast functions

Mutual information
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ICA for linear instant. mixtures

A B

Unknown 

sources 

s(t)

Estimated 

sources 

y(t)

Mixtures

x(t)

Assumptions: 

- A is an unknown mixing matrix, assumed regular

or full rank

- in the following, we assume A is a square matrix,

- B is the separating matrix

- sources are mutually independent

Principle:

- Unsupervised : since s(t) is unknown, one cannot compare y(t) to s(t) !

- B is estimated so that y(t) becomes independent
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3.1. Linear mixtures: second order

 If we only use second order statistics…?

 For 2 mixtures of 2 sources,

– B has 4 parameters (unknowns),

– there are only 3 equations:

i.e. less equations than unknowns. Impossible !

 For N mixtures of N sources,

– B has N x N parameters (unknowns),

– there are only N + N(N - 1)/2 equations:
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Linear mixtures: second order

 At the second order 2… one could adjust B so that 

outputs become decorrelated: 

 The algorithm converges if:

 One observes that: 

 The separation matrix B is then symmetric, and 

cannot inverse any mixing matrix.
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Linear mixtures: second order

 For 2 mixtures of 2 sources, solution is not unique. 

They live in a 1-D manifold defined by:

 This is a set of hyperboles, depending of the ratio of 

variances and of the mixing matrix. 
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Linear mixtures: second order

 The family of hyperboles intersects in a point 

depending only on mixing matrix coefficients.
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Exercice

 Assuming                          and

and source variance are denoted                 , show that 

1

1

21

12

a

a
A

21  and 

2

1

22
2112

2

1

2
1221

2

1

2
1221

2

1

22
2112

21

1 abaa

aaab

b

1

1

21

12

b

b
B

A B

Unknown 

sources 

s(t)

Estimated 

sources 

y(t)

Mixtures

x(t)

  toleads 0][ 21yyE



Course Campinas – July 20-29, 2010 39/198

A two step approach 

 For linear mixtures, B can be factorized in 2 matrices

– a whitening (or sphering) matrix W,

– An orthogonal (rotation) matrix, U.

 In fact, W is computed with 2nd-order statistics so 

that :

 It means that WA is an orthogonal matrix, and thus U

must be an orthogonal matrix.

A U
s(t) x(t) y(t)

W
z(t)
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A two step approach 

 For linear mixtures, B can be factorized in 2 matrices

– a whitening (or sphering) matrix W,

– an orthogonal (rotation) matrix, U.

 From an algebraic point of view:

– involves n(n + 1)/2  equations i.e. 

defines n(n + 1)/2 parameters

– the orthogonal matrix U is related to n(n - 1)/2 elementary 

(plane) rotations (Givens rotations), i.e. requires n(n - 1)/2 

parameters

– the total number of parameters is exactly n x n

A U
s(t) x(t) y(t)

W
z(t)
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Demo: decorrelation not enough 

 For linear mixtures, we show 

– joint distribution of sources (s), mixtures (x), mixtures after 

sphering (z) and y after a (non optimal) rotation

– for uniform, Gaussian, sparse data

 Demo with dis_gau.m, dis_uni.m, dis_spa.m

A U
s(t) x(t) y(t)

W
z(t)
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2.2. Nonlinear decorrelation

 Higher (than 2) order moment  leads to better independence 
approximation than decorrelation:

 For instance, one proposes the following algorithm:

 The algorithm converges if 

 simplest case:                        

no longer symmetry:

as many equations as unknowns.

 Problem: how to choose optimally f and g ?
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2.3. Contrast functions: definition

 Since s(t) is unknown, one cannot compare y(t) to s(t) and use a 
least square method

 One proposes to compute a contrast function which will be 
maximum when y(t) = s(t), but does not depend on s(t)

 (Comon, 1991 and SP 1994 ; Donoho, 1981)

A contrast function is a function           from the set of pdf to R with 
the following properties:

1)                              , for any permutation matrix P,

2)                              , for any invertible diagonal matrix D,

3) if x is a random vector with independent components and A is an 
invertible matrix, then                              , 

4) if                             , then A = DP, where D is diagonal matrix 
and P is a permutation matrix.
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Contrast functions: examples

 The opposite of the absolute value of the cross-correlation is not 
a contrast function

– For instance, for any rotation matrix U,                             

while              , i.e. the 3rd property is not satisfied.

 The opposite of mutual information is a contrast function
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Contrast functions: examples

 Define the 4th-order cross-cumulant of a zero-mean variable y 

 The sum of  the squared 4th-order cumulants (after sphering):

 The sum of  the absolute 4th-order cumulants:
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Contrast: Maximum likelihood

 According to the model x = As, we can write the likelihood:

 For T iid samples,                                  , the log-likelihood is:
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Contrast: Maximum likelihood

Fairly good match Gaussian model Bad match

Reprinted from J.-F. Cardoso, Proceedings of the IEEE, Vol. 9(10) 2009-25
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Contrast functions: exercises

 Show that the opposite of mutual information is a contrast 
function. 

– The idea is to show -I(Y) is negative and equal to zero if and only if 
components of Y are independent (one will use                      )

 Compute the pdf            of the random vector y=Cs, where C is 
an invertible matrix, as a function of the (known) pdf        of the 
random vector s, assumed with independent components

 Show that mutual information is preserved by any invertible 
diagonal transform.
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Simplified criterion derived from MI

 The mutual information writes:

 Since H(X) does not depend on the separating system, 

minimizing MI is equivalent to minimize:

 This criterion is simpler, since it doesn’t require estimation of 

joint pdf.
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MI and Maximum likelihood

 Asymptotically, ML tends toward:

 Denoting y = A-1 x,one can compute the KL divergence:

 ML finds a matrix A such that y = A-1 x is as close as possible 

(at the KL sense) of the hypothesized distribution of the sources.
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MI and Maximum likelihood

 One can also consider the relationship between MI and ML by 

denoting :

– is the distribution with independent entries (joint pdf factorises) 

with the same marginal distribution than 

– s is the hypothetized distribution of the independent sources

 Then, one can write (using information theory relationships)
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y

Independence of y (MI)

does not depend on s

Mismatch between 

estimated y and the model s

ML



Course Campinas – July 20-29, 2010 52/198

MI and Gaussianity

 Intuitively: due to Large Number Law, sum of random variables 

is more Gaussian than each random variable

 For linear mixtures: 2-stage algorithm

 The separating matrix is split in two matrices:  a whitening (or 

sphering) matrix W and a rotation matrix U, i.e.:

 The mutual information writes, with B = UW:
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MI and Gaussianity

 Minimizing MI is equivalent 

– to minimize the sum of marginal entropies, with random variables 

with normalized variances, 

– to minimize gaussianity of each Yi since entropy is maximum for 

Gaussian distribution

 Since Yi are unit variance random variables, on can use the 

neguentropy J(Yi). Negentropy is positive and equal to 0 iff Yi is 

Gaussian:

 Minimize Gaussianity is equivalent to maximize neguentropy
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MI and Infomax

 B is followed by component-wise NL mappings     , which are 

the cumulative density functions of Yi

 Zi is then uniformly distributed in [0, 1], hence:

 The mutual information writes:

 Minimizing MI of Y, I(Y) = minimizing MI of Z, I(Z)

= maximizing joint entropy of Z, H(Z)

 Infomax algorithm: Bell and Sejnowsky (Neural Comp., 1995)
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4. Algorithms

Nonlinear decorrelation

MI minimization

FastICA

Joint diagonalization
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4.1. Nonlinear decorrelation

 For instance, one proposes the following algorithm:

simplest case:                        

other functions:
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4.2. MIM-based algorithm

 For linear mixtures, one has to estimate B

 We compute the criterion gradient with respect to the 
parameter :

 The separation matrix is updated according to:

 The algorithm converges when         is equal to 0 (on 
the average), i.e. if I is minimum.
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Mutual information algorithm (1/2)

 The mutual information writes:

 Estimation equation is then:                  where     represents the 
parameters

 It leads to the following equation:

which needs estimation of pdf or score function (der. of log pdf).
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Mutual information algorithm (2/2)

 Since                               , the derivative of MI is:

 Multiplying by BT and using y = Bx,

A B
S(t) X(t) = AS(t) Y(t) = BX(t)
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Mutual information algorithm (2/2)

 This result leads to the following estimation equations (NL 
decorrelation):

– For zero-mean Gaussian sources,                               , 

i.e.  the estimating equation only requires 2nd-order statistics,

– For non Gaussian sources : higher (than 2) order statistics,

– Priors or good estimates of source distribution leads to 
optimal statistics ; approximation of pdf leads to different 
algorithm implementations (2nd order, cumulants, etc.).
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Independence criterion: pdf estimation

 Estimation equations require pdf’s or score functions estimates

 pdf’s can be estimated using various methods

– expansion near Gaussianity: Gram-Charlier (Lacoume 91, Comon 

SP 94, Yang et al. SP 98), or Edgeworth expansions

– kernel estimators (Pham IEEE Trans. SP 96, Taleb, Jutten IEEE SP 

99) … then, score functions are estimated by derivation

 Score function can be estimated directly by minimizing MSE cost 
(Pham et al. EUSIPCO 92 ; Taleb, Jutten ICANN 97, IEEE SP 99)
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Independence criterion: pdf estimation

 Pdf estimation based on kernel estimate

– kernel estimate is a well know statistical method (Silverman, etc.)

– assuming N samples xk of the random variable X, the pdf estimation 

is: 

– The kernel must satisfy to a few conditions, and can have different 

shapes, e.g. Gaussian, triangle, square (Parzen window), etc.

– Example of Gaussian kernels:

 Demonstration with different values of h (ker_est.m)
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Independence criterion: score estimation

 Score function can be estimated directly by minimizing MSE cost 
(Pham et al. EUSIPCO 92 ; Taleb, Jutten ICANN 97, IEEE SP 99)

w

w

w

w
w

w
w

w

w

w

ww

y

yy
yE

yy
y

E
J

yyEJ

YY
Y

YY
Y

YY

),(ˆ),(ˆ
),(ˆ

)(),(ˆ
),(ˆ)(

)(),(ˆ
2

1
)(

2

2

)(

)(')(ln
)( since

yp

yp

dy

ypd
y

Y

YY
Y



Course Campinas – July 20-29, 2010 64/198

4.3. FastICA algorithm

 Main idea for estimating one source

– consider first a whitening step, W, such that z = W x is 

spatially white and with unit variance ; U is a rotation matrix

– estimating a vector u such that the estimated source

has a maximum absolute value kurtosis, i.e. 

 Remark that, due to sphering of z,  the gradient is 

maximum if u is colinear to the derivative of F(u).
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FastICA algorithm

 We have then: 

 The algorithm is then the fixed-point sequence:
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FastICA algorithm 

 More generally, with a contrast function: 

 Adding the constraint and writing the Lagrangian:

where g denotes the derivative of G

 Solving the Lagrangian by Newton method writes:

 Computing the second derivative of Lagrangian leads to the 

matrix (Hessian):
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FastICA algorithm 

 The problem is the Hessian matrix should be inverted, which is 

cost computing.

 For avoiding the inversion, Hyvärinen and Oja proposed the 

approximation:

 Using this approximation, the approximative Newton iteration 

becomes:
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FastICA algorithm 

 Coming back on the derivative of the contrast F(u)

 Denoting             , the minima of the constrast function involve 

higher-order statistics:

 This condition is similar to the one obtained with 

 Consequently, the optimal function g is related to the unknown 

score function of y
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FastICA algorithm: deflation scheme 

 Idea is to extract one independent component, and then to 

remove it from the mixture, etc.

 The deflation algorithm

1. Choose the number m of IC to extract, p = 1

2. Initialize up (randomly)

3. Do an one-unit iteration for computing up

4.Do the following (Gram-Schmidt like) orthogonalization

5. Normalize up by dividing by its norm

6. If up not converged, goto 3.

7. Set p=p + 1 and if p < m + 1, goto 2, else stop.
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FastICA algorithm: symmetric scheme 

 Idea: to extract all the independent components simulataneously

 The symmetric algorithm

1. Choose the number m of IC to extract, p=1

2. Initialize up (randomly), p = 1, …m

3. Do an iteration for computing all the up in parallel

4. Do the parallel orthogonalization (see Hyvärinen, Karhunen, Oja)

5. If not converged, goto 3, else stop

 It is easy to check that the orthonormalization step leads to an 

orthogonal matrix i.e. after orthonormalization UUT = I
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4.4. Joint diagonalization algorithms

 Coming back to decorrelation

– for different variance

ratios, there is only one

intersection between

the curves Ey1y2 = 0,

– the idea is to jointly 

diagonalize the two (or

more) covariance 

matrices. 12b

21b

The intersection only

depends on the mixing 

matrix entries: it is the 

separation solution
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Joint diagonalization algorithms

 Non white sources:

 Non white sources with different spectra:

 Covariance matrix of delayed sources

or its symetrized version
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Joint diagonalization algorithms

 Joint diagonalization of at least 2 (symetrized) covariance 

matrices of delayed sources, with different delays (AMUSE, Tong 

et al. 1990 ; SOBI, Belouchrani, Cardoso, 1995, etc.)

 Joint diagonalization of at least 2 (symetrized) covariance 

matrices of non stationary sources, computed on different 

windows (Matsuoka et al., 1995 ; Pham, Cardoso, 2001)
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Joint diagonalization algorithms

 Algorithm principles

– a first sphering step W, corresponding to diagonalizing the 

covariance matrix

– then, one has to determine the rotation matrix U, at higher 

order. With suited parameterization, this can be done very 

fast and easily, for any dimension.
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Joint diagonalization algorithms

 Parameterizing U, with Givens rotation leads to very simple 

algorithms, for any dimensions :

 The idea is to estimate elementary rotations successively, by 

means of Jacobi rotations, which tends to cancel off-diagonal 

elements, 2 by 2
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Joint diagonalization algorithms

 Jacobi rotation: find Qik such that:

where Qik is a Givens rotation matrix: 
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It is easy to see that the product

Qik
T A Qik only modify the entries

belonging only to rows i or k and 

columns i or k. The condition 

a’ik = 0 leads to a simple 2nd 

degree polynomial equation, and 

to simple algorithms.



Course Campinas – July 20-29, 2010 77/198

Joint diagonalization algorithms

 In joint diagonalization algorithms, one iteration consists in a 

sweep of all the elementary Jacobi rotations, i.e. n(n - 1)/2 for a 

n-dimensional matrix

.

 The algorithm can be used :

– for any dimension (just the number of elementary rotations in each 

sweep changes),

– for matrices computed as covariance matrices of delayed non white 

signals (SOBI or AMUSE), of non stationary signals on different 

windows, or of matrices deduced from 4th-order cumulant tensor  

(JADE),

– in the time domain as well as in the frequency domain, since linear 

relation is preserved by Fourier transform:
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Equivariance principle

 The speed and performance of first ICA algorithms were 

depending on the mixing matrix A.

.

 Instead of considering additive adaptation scheme, Cardoso and 

Laheld (IEEE SP 1996) proposed multiplicative scheme:

 The adaptation scheme is related to the optimization of a criterion

 In this purpose, we have to compute the gradient of the criterion 

for the multiplicative scheme. It has been called “relative 

gradient”.

 Note that Amari and Cichocki obtained the same results but with 

a quite different approach, and called “natural gradient”. 
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Equivariance principle

 Denote J(y) the criterion to minimize. In multiplicative scheme, 

we want :

 The variation is minimal if:

Note H(y) is not the entropy !

 It leads to the following iteration:
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Why Equivariance ?

 Multiplying the following iteration by A, the mixing matrix, and 

denote C = BA:

 The last rule shows that the trajectory does only depend on the 

global system C, and not on A. The mixing matrix only defines 

(according to the initial value of B) the initial point of the iteration 

since:

 As a result, the performance of the algorithm does not depend on 

the mixing matrix A. In practice, the equivariance property is then 

very interesting.
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5. Convolutive mixtures

Time domain

Frequency domain
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Convolutive mixtures

 Most of the works only concern 2 sources and 2 sensors

 Mainly 3 approaches:

– methods based on linear time invariant filters,

– methods based on a frequency approach,

– methods in frequency-time domain.

 Independence x(t) and y(t) now concerns independence 

between random processes, i.e. independence between any 

part of the infinite series of samples

))(),(( and ))(),(( 43:21: 4321
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5.1. Convolutive mixtures (1/7) - Subspace

 Method based on linear time invariant filters

 The convolutive mixture 

is modelled in the z-domain by:

 Subspace approach consists in writing the mixing:

For T samples
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Convolutive mixtures (2/7) - Subspace

 Under mild conditions on the mixing filter and on the observation 

number, source can be separated

 The main drawbacks are:

– large matrice has to be handled

– the sensor number must be larger than the source number

 For more details, see Gürelli, Nikias 1995; Moulines et al., IEEE SP 

1995 ; Abed-Meraim et al., IEEE IT 1997; Gorokhov, Loubaton, 

IEEE CAS 1997 and SP 1999; Mansour et al. IEEE SP 2000, etc.
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Convolutive mixtures (3/7) - LTI filters

 Methods based on linear time invariant filters

 The convolutive mixture 

is modelled in the z-domain by:

 The methods consist in estimating an inverse matrix B(z) (up to 

PD(z)). 

 For stability reason, A(z) have to be phase minimal.
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Convolutive mixtures (4/7) - LTI filters

 Due to the indeterminacies (D(z)), one can propose simplified 

mixtures:

This model is realist, if one source is dominant on each sensor

 Then, one can also impose structural constraints on B(z):

 With the 1st constraint a post-processing must be applied, since, at 

separation (when outputs are independent):
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Convolutive mixtures (5/7) - LTI filters

 Optimization of B(z) can be done according to various methods:

– cancelling high-order cross-moments (Nguyen Thi, Jutten, SP 1995)

– cancelling 4-th order cross-cumulants (Nguyen Thi, Jutten, SP 1995)

– Minimizing the sum of squared cumulants (Simon et al., ICASSP 98)

– cancelling cross-trispectra (Yellin, Weinstein, IEEE SP, 1994)

– partial approximate joint diagonalisation (PAJOD) of cross-cumulant 

matrices (Comon et al. ICA 2001)
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Convolutive mixtures (6/7) - LTI filters

 Another simple approach, based on linear prediction, is possible for 

MA model of mixtures:

 Assuming A0 invertible and denoting                  and

 Matrices         can be estimated, at the second order by linear 

prediction (Comon, TS 1990 in French ; AbedMeraim et al. IEEE SP 

1997)

 Then, the following equation (corresponding to instantaneous 

mixtures)                                 is solved by BSS at higher order
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Convolutive mixtures (7/7) - Frequency

 Taking short-term FT, the model

becomes:

 Around a frequency    , one has

 Then, on each narrowband, the problem reduces to a simple BSS 

problem in instantaneous mixtures, with complex-valued entries

 For reconstructing the large band sources, the reconstruction 

process must take into account the possible scale and 

permutation  indeterminacies in each narrowband

 Various solutions, based on continuity and correlations between 

sources from a channel to the neighbors have been proposed: 

Capdevielle et al., ICASSP 94 ; Wu, Principe, ICA’99 ; Mejuto et 

al., ICA 2000 ; Dapena, Servière, ICA 2001, Pham, Servière, 

ICA03, etc.)
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