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Summary

 1. The problem of source separation

 2. Dependence measures

 3. Linear instantaneous mixtures

 4. Algorithms

 5. Convolutive mixtures

 6. Nonlinear mixtures

 7. Semi-blind approaches and algorithms

 8. Applications
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1. The problem of source separation

Source separation

Motion decoding

Blind source separation and ICA

Undeterminacies
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1.1. Source separation: the problem

 The signal received by a sensor (electrode, antenna, 

microphone, etc.) is an intricated signal.

Is it possible to retrieve the different signals (sources) 

from the mixture ? If yes, how ?
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Source separation: main idea

 It is possible using a few observations 

– more sensors than sources

– different mixtures (observations)

 Spatial diversity
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Source separation with priors

 With priors on sources

– different frequency ranges: classical simple filtering,

– one reference (Widrow-Hoff method): adjust k so that the 

error is decorrelated from the reference

 But if sources have same frequency ranges, and if 

there is no reference ?
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1.2. Origin: Motion decoding
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Can one retrieve p(t) et v(t) from the mixtures fI(t) and fII(t) ?

There are some biological evidences… 

But, under what conditions ? And how ?

Linear model
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1.3. BSS problem

 Assumption on the mixture model F

– linear instantaneous (without memory) model,

– linear convolutive (with memory) model,

– nonlinear model.

 One chooses a separation model G, suited to the 

mixture model

F G

Unknown 

sources 

s(t)

Estimated

sources 

y(t)

Mixtures

x(t)

T samples: t = 1, …T
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ICA method

 Assume the model F is known, and G is suited to F

 Without priors, the problem is impossible

 A possible source prior: statistical independence

– Independent Component Analysis: ICA method,

– idea: estimate G so that the Yi„s become independent

– since prior is very weak, the problem is called blind

F G

Estimated

sources 

y(t)

Mixtures

x(t)

Unknown 

sources 

s(t)
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Linear case: can BSS be solved ?

 Impossible (Darmois 1953) for

– independent identically distributed (iid) Gaussian sources

 Possible for

– iid non Gaussian sources

– Gaussian non iid sources, e.g. non temporally independent

(colored), or non identically distributed (statistics is 

changing: nonstationarity)
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sources 
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ICA: linear instant. mixtures

 Question :

 Theoretical results (Comon, Signal Processing 1994)

– Let be x(t) = A s(t) a linear instantaneous regular mixture (A

is a regular matrix) of independent sources s(t), whose at 

most one is Gaussian, signals y(t) = B x(t) are independent 

iff BA = DP

– Independence is equivalent to separation up to scale and 

permutation indeterminacies.

A B

Unknown 

sources 

s(t)

Estimated 

sources 

y(t)

Mixtures

x(t)
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ICA: linear convol. mixtures

 Theoretical results for convolutive mixtures (Weinstein, 

Yellin, IEEE SP, 94 ; Nguyen, Jutten, SP, 1995).

– Let be x(t) a linear convolutive mixture (A(z) is an invertible 

filter matrix) of independent sources, whose at most one is 

Gaussian, signals y(t)=[B(z)]x(t) are independent iff 

B(z)A(z) = D(z)P.  

Independence is equivalent to separation up to filter and 

permutation undeterminacies.

A(z) B(z)

Unknown 

sources 

s(t)

Estimated

sources 

y(t)

Mixtures
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ICA: nonlinear mixtures

 Theoretical results for nonlinear mixtures

– For general nonlinear mixtures, Y independence does not 

insure source separation (Darmois, 1953 ; Hyvärinen, 

Pajunen,1998).

– Particular nonlinear mixtures are separable, e.g. the post-

nonlinear models (Taleb, Jutten, IEEE SP 1999 ; Babaie-

Zadeh, Jutten, Eusipco 2002 ; Jutten, Babaie-Zadeh, 

Hosseini, SP 2004 ; Achard, Jutten, IEEE SPL 2005).
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ICA: under- or over-determined

 More mixtures than sources: over-determined 

mixtures

– there is solution provided than the mixture is invertible

 More sources than mixtures:under-determined 

mixtures

– there is no solution,

– even, if the mixture has been estimated or is known, since it 

is not invertible, sources cannot be deduced: “identification 

of F” and “restoration of sources” are two different problems,

– for linear mixtures, one can show (Taleb, Jutten, ICASSP 

99) that the sources are known up to a random vector !

– Solution if extra priors, e.g. discrete or sparse sources 
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ICA: linear noisy mixtures

 The model is: 

where b(t) is assumed non correlated with s(t).

 Basically, there are two problems:

– noise (except if it is Gaussian, and ICA use higher-order 

statistics) implies a biased estimation of B = A-1

– even if B is perfectly estimated, i.e. B = A-1, the estimated 

sources are:

 The noise can be amplified. 
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1.4. Understand the undeterminacies

 Scale and permutation undeterminacies can be 

understood according to various ways.

 For a linear model, the sensor i receives the mixture :

 With independence: if y(t) has independent 

components, then DPy(t) too.
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Consequence of undeterminacies

 Undeterminacies mean that we cannot estimate the 

power of the sources (in linear mixtures)

 As a consequence, 

– we cannot estimate n parameters among the n x n of  the 

mixing matrix,

– we can then, without loss of generality, impose the main 

diagonal of A to be equal to 1

– we also can parameterize the separating matrix B with fixing 

n parameters, or with column normalization

– we can arbitrarily fix the power of estimated sources,
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2. Dependence measures

Independence definition

Dependence measures
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2.1. Supervised or unsupervised

 ICA is based on source independence

– Independence (or dependence) measure does not need 

external information, i.e. no supervisor

– ICA is then basically an unsupervised estimation method  

– it is also called “blind” like in similar deconvolution or 

equalization problems

 Beyond ICA, one can look for using priors

 In this Section, one focuses on independence 

measure for ICA
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2.1. Independence definitions

 With words…

 From probability

– for 2 random variables: 

– for N random variables:

 Problem: equality of multivariate functions
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Independence definitions

 First characteristic functions 

– it is the inverse Fourier transform of the probability density 

function:

– as a consequence, there is the same information in the pdf 

and in the characteristic function.

 Second characteristic function

– it is the log of the first characteristic function:
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Independence definitions

 From the definition (random variable):

 The SCF is equal to 0 for = 0. 

 One can show the SCF is continuous near 0. Then, it 

can be expanded in Taylor series.
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Independence definitions

 Cumulant definition

– it is the coefficients of the expansion of the SCF:

 In other words, the order-p cumulant is:

1
!

)(log)(

p

p

p
p

j

0

)(
)(

p

p
p

p
d

d
j



Course Campinas – July 20-29, 2010 24/198

Independence definitions

 Exercice: compute the 2nd, 3rd and 4th order 

cumulants of a zero-mean variable

 Write the Taylor expansion:

and identify to the above expansion.
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Independence definitions

 Independence and characteristic functions

 Independence = cancellation of all cross-cumulants

considering Taylor expansion near 0, since right-side term 

does not content cross-terms, contrary to the left-side term

 Problem: there are an infinite number of cumulants !
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Independence definitions

 p-order cumulants are function of statistical moments 

up to order p

 The first cumulants for a zero mean variable are:

where                    is the p-order moment.
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2.2. Dependence measures

 Kullback-Leibler divergence

 It is a real number which measures the divergence 

between two distributions

 KL divergence is positive and vanishes if and only if 

f = g (this is easy to show using Jensen inequality)
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2.2. Dependence measures

 Kullback-Leibler divergence between the joint pdf and 

the product of marginal pdfs of the random vector Y

 The above divergence is positive and vanishes if and 

only if Y has independent components, i.e.: 

 This KL divergence is equal to Mutual Information I(Y)
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Dependence measures

 Mutual information (MI)

where the marginal and joint differential entropies are 

defined as:
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Dependence measures

 Mutual information (MI)

 Problem: estimation of MI requires estimation of joint

and marginal probability density functions
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Simpler dependence measures ?

 Decorrelation = second order independence

 We will see later that, using algebraic arguments, 

decorrelation is not sufficient

 However, decorrelation is a first step toward 

independence...
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