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6. Nonlinear mixtures

Identifiability

Three ideas of regularization

PNL mixtures and algorithms
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1. Introduction

Model and problem

 Multidimensional (P) observations (sensor array, satellite 

antenna, microphone array, etc.) are mixtures of N independent

sources

 Denoting                                   and                                  : 

where n(t) is a noise, independent of s(t), F(.) and s(t) are 

unknown.

 Source separation consists in extracting the sources         from 

the observations          by identifying an inverse model G:
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I. Introduction

Separability

 The key question is separability.

 In other words: Is independence sufficient for leading to source 

separation (i.e. for estimating G) ?

? BSSICA
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1. Darmois’ results

Nonlinear mappings

 Nonlinear invertible mapping F are not separable

– Let          be 2 independent variables, the random variables               

are independent too, provided that          are invertible mappings

i.e. sources can be separated, but only up to an invertible NL mapping

– Moreover, there exists many Mixing Mappings which Preserves 

Independence (MMPI), i.e. for these mappings, ICA does not imply 

BSS.

– See (Darmois, 1953) for general construction, and the following 

example.
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1. Source separation principles 

Separability (2/6)

 Separability: general case, i.e. F is a nonlinear invertible 

mapping

 NL Indeterminacies

– if                   , the random variables Si* are independent too,

and E = F(S) = F(K(S*)). 

I.e., sources are separable up to an invertible NL mapping. 

– Consider the mapping Y=G(X), and assume densities exist:

Without loss of generality, we also assume Y is uniform in [0,1]n:

We are looking for a mapping G such that Y is independent, i.e.:
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1. Source separation principles 

Separability (3/6)

 For example, we can look for solutions      monotonous in 

satisfying:

It then leads to :
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1. Source separation principles 

Separability (4/6)

 The last condition implies:

 A solution is then:

 This idea for constructing G is originally due to Darmois, 1951. A 

quite similar construction is used by Hyvärinen and Pajunen 

(Neural Networks, 1999).
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1. Source separation principles 

Separability (5/6)

 2-D example

– X and Y are two independent Gaussian variables with joint pdf

– Consider the mapping, and its Jacobian matrix:

– The joint pdf of the new variables is:
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1. Source separation principles 

Separability (6/6)

 Statistical independence is not sufficient for insuring separation in 

non linear mixtures

– there exists an infinity of invertible mappings which preserves 

independence without having a diagonal Jacobian matrix

– if the mapping has diagonal Jacobian matrix, source can be only 

recovered up to a NL mapping

 Separating NL mixtures requires structured constraints or 

regularization techniques
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2. How regularizing for avoiding MMPI ?

 Many nontrivial mapping preserving independence: one has to  

reduce the indeterminacy by “regularizing” 

 We consider three ways:

– Restrict G to smooth mappings (Almeida et al., Wu et Zurada), or des 

Bayesian approach (Valpola et al.),

– Restrict G by structural constraints (Taleb & Jutten, PNL mixtures, 

1999 ; Kagan et al., Mappings satisfying addition theorem, 1973 and 

Eriksson & Koivunen, Eusipco’02, Toulouse) 

– Exploiting particular source properties : bounded sources (Babaie-

Zadeh & Jutten, Eusipco’02, Toulouse), Markov sources (Hosseini & 

Jutten, IEEE NPL, 2003)

 Other ways ?
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2.1. Smooth mappings ?

 A smooth mapping can preserve independence without separating 

the sources. 

 As an example (M. Babaie-Zadeh, PhD thesis ; Jutten, Babaie-

Zadeh, Hosseini, Signal Processing, 2003)
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2.2. Structural constraints

(Jutten and Taleb, ICA’2000 ; Taleb, IEEE SP, 2002)

 Definition: Obvious mappings

H is an obvious mapping if any random vector with independent 

components is transformed by H in another random vector with 

independent components I

An obvious mapping is then an independence preserving mapping

 It can be shown that obvious mappings satisfy:

 The Jacobian matrix of an obvious mapping is the product of a 

diagonal matrix and a permutation matrix

 The set of obvious mappings is denoted Z

nishssH iini ,,1),(),,( )(1 
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2.2. Structural constraints

 Darmois’s results claim that there is an infinity of non obvious 

mappings which preserve independence

 With constrained model of mixtures

– If the mapping H = G o F is constrained to belong to a model set C , 

the indeterminacies can be reduced, and hopefully cancelled

– Then, consider the set of signal distributions

then contains all the distributions which cannot be separated by 

mapping belonging to C

 Separation is possible for source distributions which do not belong 

to     with indeterminacy 
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2.2. Structural constraints

 Case of regular linear mixtures

– C is the set of square matrices

– is the set of matrices which are the product of a diagonal matrix 

and a permutation matrix

– The set      is the set of distributions which contains at least 2 Gaussian 

sources (consequence of the Darmois-Skitovitch theorem)

– Source separation is then possible provided than there is at most one 

Gaussian source (avoiding    ); sources can be restored apart from one 

permutation and one scale factor.  

CZ

Obvious mappings Z
Constrained models C

CZ )(\ CZC
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2.2. Structural constraints
PNL mixtures

 PNL are particular NL mixtures, i.e. with structural constraints

(A. Taleb, C. Jutten, IEEE Trans. SP, Sept. 1999)

 PNL are realistic enough: linear channel + NL sensors and amplifiers

 PNL are separable NL mixtures, 

– If at most, one source is Gaussian, if the mixing matrix has at least 2 non 

zero entries per row and per column, and if the functions fi are invertible, 

then outputs are independent iff giofi is linear and BA=DP

– PNL are particular mixtures satisfying addition theorem (see next slides)

Observations
Unknown

sources
Mixing 

matrix A

f1(.)

f2(.)

g1(.)

g2(.)

Separation 

matrix B

Estimated

sources

S E Y
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2.2. Constrained NL mappings (1/3)

 D-S theorem has been extended to NL function satisfying an 

addition theorem (Kagan, Linnik, Rao, Communications in Statistics, 1(5),471-474, 

1973)

where F is continuous ate least separately on each variable

 Example:

 If (E,o) is an Abelian group, one can define a « multiplication » 

(*)

 Then, one has the relationships
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2.2. Constrained NL mappings (2/3)

 Theorem. Let X1,…Xn be independent random variables such 

that 

are independent, and where * and o satisfy the above conditions, 

then            is normally distributed if 

 The proof is based on application of the D-S theorem to:

 Kagan et al. give a few examples of solutions of the functional 

equations quoted by Aczel (Lectures in Functional Equations and Their 

Applications, Academic Press, 1966)
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2.2. Constrained NL mappings (3/3)

 PNL mixtures are particular NL mappings satisfying the addition 

theorem

 In fact, denoting
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2.3. Constraints on sources

Bounded sources

 PNL mixtures of bounded sources (Babaie-Zadeh & Jutten, 

Eusipco 2002 ; Babaie-Zadeh, PhD Thesis INPG - 2002)

 Theorem. A component-wise mapping preserves boundary 

linearity iff it is a linear mapping

– New proof of separability for PNL mixtures

– Algorithm with independent estimations of linear and nonlinear 

parts

A

Nonlinearities (gof)

B
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2.3. Constraints on sources

Temporally correlated sources (1/3)

 Hosseini and Jutten (IEEE SP Letters, 2003)

 Sources temporally correlated (e.g. modelled by AR or Markov 

models)

 The set of NL mixing mappings preserving independence is 

reduced if sources are non iid, due to stronger independence 

criterion (independence of random processes)

NL mappings preserving independence

NL mappings preserving

independence for colored

sources
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2.3. Constraints on sources

Temporally correlated sources (2/3)

 One considers the Darmois’s construction for mixing mappings 

preserving independence (for 2 mixtures of 2 sources)

 As a result, 

 Since sources are temporally correlated, one can prove that:
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2.3. Constraints on sources

Temporally correlated sources (3/3)

 After some computations, one can show that the relation becomes: 

 Clearly, the left-side term is a function of variables a and c, and 

consequently, it is usually different of the right-side term.

 Then, the above mapping is no longer MMPI for colored sources;

in other words, coloration allows to restrict the indeterminacy.

)()(),,(, apdbbpcbap ABCBA
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Conclusion

 For NL mixtures, independence does not insure source separation

 Regularization is required for reducing solution to trivial mappings

– Smooth mapping is not a sufficient constraint, although...

– Structural constraints leads to particular NL separable mixtures

• Mappings satisfying Addition theorem, PNL mixtures

– Constraints on the sources can reduce the set of solutions

– Bayesian approaches, e.g. ensemble learning (Valpolla et al.) 

 Extension to Nonlinear ICA ?

 Are NL mixtures practically useful ? or are they only a theoretical 

curiosity ? 
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3. Source separation principles 

Independence criterion (1/2)
 It consists in estimating an inverse mapping G which provides 

independent signals

 Source separation is based on independence criterion on outputs

 The mutual information is a convenient independence criterion
i
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1. Source separation principles 

Independence criterion (2/2)

 The mutual information writes:

 Estimation equation is then:

where      represents the parameter vector

 It leads to the following equations:

0
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2. Source separation in PNL mixtures

Model and Separability

 PNL are particular NL mixtures, i.e. with structural constraints

 PNL are realistic enough: linear channel + NL sensors and amplifiers

 PNL are separable NL mixtures, 

– If at most, one source is Gaussian, if the mixing matrix has at least 2 

non zero entries per row and per column, and if the functions fi are 

invertible, then outputs are independent iff giofi is linear and BA=DP

Observations
Unknown

sources
Mixing 

matrix A

f1(.)

f2(.)

g1(.)

g2(.)

Separation 

matrix B

Estimated

sources

S E YX Z
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Source separation in PNL mixtures

Criterion

 The mutual information writes:
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Source separation in PNL mixtures

Estimation equation (1/3)

 Deriving I(Y) with respect to B 

 Deriving with respect to parameters of gi)
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Source separation in PNL mixtures

Estimation equation (2/3)

 Linear part estimation does not require accurate score functions:

Consequently, if Yj are zero-mean independent random variables

 On the contrary, nonlinear part requires an accurate score 

function estimation :
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Source separation in PNL mixtures

Estimation equation (3/3)

 Estimation equation requires pdf’s or score functions estimates

 pdf’s can be estimated using various methods

– expansion near Gaussianity: Gram-Charlier (Lacoume 91, Comon SP 94, Taleb 

& Jutten, ESANN 97, Yang et al. SP 98), Edgeworth

– kernel estimators (Pham IEEE Trans. SP 96, Taleb, Jutten IEEE SP 99)

… then, score functions are estimated by derivation

 Score function can be estimated directly by minimizing MSE cost 
(Pham et al. EUSIPCO 92 ; Taleb, Jutten ICANN 97, IEEE SP 99)
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Source separation in PNL mixtures

Algorithm

 The algorithm is based on the estimation of 3 parts:

– marginal score functions of estimated sources,

– estimation of the nonlinear functions gi,

– estimation of the separationg matrix B,

Observations
Unknown

sources
Mixing 

matrix A

f1(.)

f2(.)

g1(.)

g2(.)

Separation 

matrix B

Estimated

sources Y

S
X

Score

function

estimation 

Parametric (or not)

estimation algorithm

ZE
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Source separation in PNL mixtures

Examples (1/2)
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Source separation in PNL mixtures

Examples (2/2)
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Blind inversion of Wiener systems 

The model

 Wiener system

 Hammerstein system

h
s(t)

f

x(t)

g

x(t) z(t) y(t)
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Blind inversion of Wiener systems 

Classical approaches

 Wiener system is a usual NL model in biology, in satelite 

communications, etc.

 Classical identification methods for nonlinear systems are based 

on higher-order cross-correlations

 Usually, input signal is assumed to be iid Gaussian

 If the distortion input is available, the compensation of the 

nonlinearities is almost straighforward, after identification of the 

NL

 However, in a real world situation, we don’t know either the 

nonlinear system input or the input distribution
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Blind inversion of Wiener systems 

Wiener/PNL (1/2)

 With the following parameterization:

since the scalar input s(t) is iid, S(t) has independent 

components and consequently X(t) is a mixture of independent 

sources, the Wiener system is nothing but an infinite 

dimensionnal postnonlinear mixture: )()( tt HSfX
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Blind inversion of Wiener systems 

Wiener/PNL (2/2)

 If the Wiener system satisfies:

– Subsystems h and f are unknown and invertible ; h can be a 

nonminimum phase filter

– The input s(t) is an unknown (a priori) non Gaussian iid process

it is equivalent to PNL mixtures, with a particular Toeplitz 

mixture matrix H, with same NL function f on each channel

 PNL separability implies Wiener systems inversibility

 PNL separability is only proved for finite dimensions. It is 

conjectured for infinite dimensions

 Practically, the filter h(k) and its inverse w(k) are truncated
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Blind inversion of Wiener systems 

iid criterion

 Output of the inversion (Hammerstein) structure:

 Y(t) is spatially independent = the sequence {y(t)} is iid

 The mutual information for infinite dimensional stationary 

random vectors is defined from entropy rates (Cover, Thomas, John 

Wiley & Sons, 1991)

 I(Y) is always positive and vanishes if and only if y(t) is an iid 

sequence
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Blind inversion of Wiener systems 

Estimation equations (1/2)

 Estimation equations are then 

 I(Y) must be derived with respect to parameters of the linear 

part: w, and with respect to the nonlinear function: g

 We will use the relative gradient descent which provides 

equivariant algorithms. 

 Linear part. Consider a small relative variation of w, in terms of a 

convolution by a small filter . The first order variation of I(Y):

with 

with                           , it leads to

 With a Gaussian signal,            reduces to second order 

statistics...
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Blind inversion of Wiener systems 

Estimation equations (2/2)

 Using a nonparametric approach, the relative deviation:

the differential with respect to NL function g is:

 The gradient descent algorithm is then:

provided than Q is any function satisfying:
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Blind inversion of Wiener systems 

Practical issues

 Score function estimation based on kernel

 Estimation of 

 Estimation of Q*J : relative deviation of g

 A simple choice of Q is
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Blind inversion of Wiener systems 

Experiments (1/2)

h
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Blind inversion of Wiener systems 

Experiments (2/2)


g

e(t) x(t) y(t)
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Discussion and Perspectives

 Generally, independence is not sufficient for insuring separability

 Independence can insure separability in structured NL mixtures

 PNL mixtures are particular separable NL mixtures

 Deconvolution and Wiener system inversion are related to BSS:

time independence (iid) is then related to spatial independence 

 I(Y) can measure spatial independence or time independence (iid)

 Independence is powerful enough for blindly compensate strong NL 

distortions

– in PNL multichannel systems: satellite antenna, sensors array, etc.

– in Wiener systems (NL dynamic SISO)

 Extension to MIMO dynamic NL systems (Babaie-Zadeh, Jutten) 

 Bilinear and multi-linear models (Hosseini, Deville, ICA 04)
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7. Semi-blind approaches

Gaussian iid or non Gaussian

Discrete sources

Bounded and sparse sources

Time-frequency idea
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Semi-blind approaches

 If there are more a priori informations, even 

very weak Exploit them ! Semi-Blind

 Advantages:

– Improve the separation performance

– Provide simpler algorithms

– Can work when a blind solution is difficult

• More sources than sensors

• Separating Gaussian sources
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Gaussian mixtures and 2nd order methods

 Source separation not possible if sources are at the 
same time (Cardoso, ICA2001):
– Gaussian

– White (first “i” in “i.i.d”)

– Stationary (“i.d.” in “i.i.d”)

 Any of these dropped Source separation is 
possible
– Dropping Gaussianity iid non Gaussian : “Blind” (ICA) 

(Gaussian signals - except one - cannot be separated)

– Dropping stationarity or whiteness Gaussian non iid: 
“Semi-Blind” (Gaussianity is not required, i.e. second-order 
statistics is enough, Gaussian signals can be separated)
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Colored or Non-stationary sources

 A few advantages:

– Independence is not required, only decorrelation

– Only 2nd-order statistics

– Able to separate Gaussian sources, but not only

– Fast iterative algorithms for jointly diagonalizing 

matrices (JADE, SOBI, TDSEP, algo. of Yeredor, 

Pham, etc.)
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Examples of Semi-Blind approaches

 Geometrical approaches

– Bounded sources

– Discrete-valued sources

 Sparse sources

 Bayesian approaches 

 Audio-Visual approaches
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Geometric: Bounded Sources
 Independence ps1s2 (s1,s2)=ps1 (s1) ps2 (s2)

 Bounded support for ps1 and ps2 rectangular

support for ps1s2

 scatter plot of sources is a rectangle

Example 

with 

uniformly 

distributed

sources
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Bounded Sources (cont.)

 x = As transforms 
this rectangle to a 
parallelogram

 Mixing matrix 
assumed: 

 Slopes of borders 
1/a and b mixing 
matrix

1

1

b

a
A
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Bounded Sources (cont.)

 Post Non-Linear (PNL) 

mixtures: linear mixtures 

and nonlinear sensors

 Geometric: Transform the NL 

mixtures again to a 

parallelogram, and then 

separate the linear mixtures

A
NL

NL
exs



Course Campinas – July 20-29, 2010 142/198

Geometric: Sparse sources

Like speech, ECG, 

EEG,...

 The rectangle is not 

well filled (requires lot 

of data sample).

 Source PDF’s are 

concentrated around 

zero.

 Probability of having a 

point on the border of 

parallelogram is very 

small.
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Sparse sources

 Geometrical approach: using “axes” instead of 

“borders”

A
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Sparse Sources

 Possibility to separate more sources than sensors

 Identification of mixtures source separation

2 mixtures 

of 3 sources
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Discrete-Valued Sources

 (Belouchrani and Cardoso, 1994; Puntonet et al., 1995; Taleb 
and Jutten, 1999; Grellier and Comon, 1998)

 Other example of sparsity, usual in digital communications

 Possibility to separate more sources than sensors, robust to 
noise
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Sparse Component Analysis

 Review paper (see Gribonval, ESANN’06) 

 Main ideas

– Initial source separation problem

– Transform with a sparsifying transform T, which preserves 

linearity (e.g. wavelet transform, ST Fourier transform, etc.)

– Solve the source separation problem in the sparse space

– Come back to the initial space, with inverse of T

Asx   

sAxsAAsx ~  ~  )(   )(  )( TTT

ŝ~ estimation 

)~̂(   ˆ  ~̂ 1 sss T
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Bayesian approaches

 Provide a general framework for modeling prior 
information:
– source distribution, 

– time correlation,

– additive noise, 

– …

 Can process more sources than sensors, and 
additive noise

 Main problem: time consuming, MCMC method !

 Review paper (Mohammad-Djafari, ESANN’06)
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Audio-visual source extraction

s1(t)

s2(t)

A: mixing 
matrix

y1(t)

y2(t)

x1(t)

x2(t)
B: 

separation 
matrix

Spectral
criterion

Video Signal

Audio 
Signal

Speaker

V1(t)

Extraction of the source of interest

h, l, audio p(spectrum/video, audio) B estimated by  ML

h, l Voice activity detector cancel permut. in convol. mixt.

(Sodoyer et al., IEEE ASSP, Rivet et al., IEEE ASSP)

l

h


