3. ICA for Linear instantaneous
mixtures
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|CA for linear instant. mixtures

Unknown
sources

Estimated

Mixtures sources

s(t)

Assumptions:
- A Is an unknown mixing matrix, assumed regular
or full rank

- in the following, we assume A is a square matrix,
- B is the separating matrix

- sources are mutually independent

Principle:
- Unsupervised : since s(t) is unknown, one cannot compare y(t) to s(t) !
- B i1s estimated so that y(t) becomes independent
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3.1. Linear mixtures: second order

= If we only use second order statistics...?

= For 2 mixtures of 2 sources,

— B has 4 parameters (unknowns),
— there are only 3 equations: E(le), E(Y22), E(Y.Y,)
l.e. less equations than unknowns. Impossible !

= For N mixtures of N sources,
— B has N x N parameters (unknowns),
— there are only N + N(N - 1)/2 equations:
E(Y,%), E(Y,"), -+ E(Yy ),
E(Y,Y,), E(YYa)- - E(Yy1Yy) N

(N 2 - N)/2
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| Inear mixtures: second order

= At the second order 2... one could adjust B so that
outputs become decorrelated:

by =by —ELY; Y]

= The algorithm converges if: E[y,y;]1=0,Vi=# ]

= One observes that: b; =b;

= The separation matrix B is then symmetric, and
cannot inverse any mixing matrix.
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| Inear mixtures: second order

= For 2 mixtures of 2 sources, solution is not unigue.
They live in a 1-D manifold defined by:

2 2
2 0> )
blZ(an J{j ]JF Ay + au(j
01 01
2 2
o o
yq + 312(2j b, +1+ ag{zj
01 07

= This is a set of hyperboles, depending of the ratio of
variances and of the mixing matrix.

D1 = -
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| Inear mixtures: second order

= The family of hyperboles intersects in a point
depending only on mixing matrix coefficients.

1 04 by,
A =
07 1

(o, / o7)% =1(in bluedots)

(o, /oy)* =2 (inred+)
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Exercice

1 a 1 b
= Assuming A= (a izj and B= (b 12)
21 21

and source variance are denoted o; and o, , show that

bl{agl J{O-zj ]JF dpy + 312(0-2)
o 01

2 2
o o
[am + 312(2j ]blz +1+ ag{ 2 j
01 07

Estimated
sources

Unknown
sources

Mixtures
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A two step approach

m For linear mixtures, B can be factorized in 2 matrices

— a whitening (or sphering) matrix W,
— An orthogonal (rotation) matrix, U.

that: E@Zz")=1

O

= In fact, W is computed with 2nd-order statistics so

E[WAS(WAS)" 1= WAE[SS' J(WA)" = WA (WA)' =1
= It means that WA is an orthogonal matrix, and thus U
must be an orthogonal matrix.
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A two step approach

= For linear mixtures, B can be factorized in 2 matrices
— a whitening (or sphering) matrix W,
— an orthogonal (rotation) matrix, U.

SO A PO -

= From an_algebraic point of view:
- W' =1 involves n(n + 1)/2 equations i.e.
defines n(n + 1)/2 parameters

— the orthogonal matrix U is related to n(n - 1)/2 elementary
(plane) rotations (Givens rotations), i.e. requires n(n - 1)/2
parameters

— the total number of parameters is exactly n x n
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Demo: decorrelation not enough

m For linear mixtures, we show

— joint distribution of sources (s), mixtures (x), mixtures after
sphering (z) and y after a (non optimal) rotation

— for uniform, Gaussian, sparse data

OO O gy

= Demo with dis_gau.m, dis_uni.m, dis_spa.m
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2.2. Nonlinear decorrelation

= Higher (than 2) order moment leads to better independence
approximation than decorrelation:

E[T(y))a(y;)]=0 f=g
E[y;"y;1=0
m For instance, one proposes the following algorithm:
by =y —£E[T(y;)a(y;)]

= The algorithm converges if E[f(y;)g(y;)]=0
= simplest case: f(u)=u?, g(v)=(v)

no longer symmetry: E[y,’y,]= E[y;y;]

as many equations as unknowns.
= Problem: how to choose optimally fand g ?
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2.3. Contrast functions: definition

Since s(t) is unknown, one cannot compare y(t) to s(t) and use a
least square method

One proposes to compute a contrast function which will be
maximum when y(t) = s(t), but does not depend on s(t)

= (Comon, 1991 and SP 1994 ; Donoho, 1981)

A contrast function is a function W(p) from the set of pdf to R with
the following properties:

1) Y(ppy) =Y (p,), for any permutation matrix P,
2) Y(ppx) =Y(p,), for any invertible diagonal matrix D,

3) if x is a random vector with independent components and A is an
invertible matrix, then W (pa, ) <Y(p,).

4) It Y(pax) =¥ (py) then A =DP, where D is diagonal matrix
and P is a permutation matrix.
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Contrast functions: examples

= The opposite of the absolute value of the cross-correlation is not
a contrast function

W(py) =~ [cum(y;,y;)
i,

— For instance, for any rotation matrix U, Y(pux) ="Y(py)
while U # DP, i.e. the 3rd property is not satisfied.

= The opposite of mutual information is a contrast function

¥(py)=-1(Y)
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Contrast functions: examples

= Define the 4th-order cross-cumulant of a zero-mean variable y
Cumyy (y) = Cum(y;, ¥, Vi, Y1) =
=BYiY; YY1 —BYiY; BV, Vi —EYiYk BY;Yi —EBY; Y1 BY;Yi
= The sum of the squared 4th-order cumulants (after sphering):
Yicalpy) = Zcumijzkl (y)

jkI=iii
= —Z Cumg; (y) +cte = —Z g (Y;) +cte

m The sum of the abéolute 4th-order cuml'JIants:

PO(py) =k (%)
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Contrast: Maximum likelithood

= According to the model x = As, we can write the likelihood:
Py (XA, ps) = Ps(A™x) det(A™)

= For T iid samples, X1 =(X,X,,---,%7) , the log-likelihood is:

1 1 _
L(A,Q) = =1 px (Xyr A ) =—In | | ps(A7x) - In[det(A)

t=1LT

)
_ %Z Inps (A™x,) - In|det(A)
t=1
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Contrast: Maximum likelithood

Fig. 5. Log-likelihood with a slightly misspecified model for ~ Fig. 6. Log-likelihood with a Gaussian model for source dis- Fig. 7. Log-likelihood with a widely misspecified model for
source distribution: maximum is reached close to the tribution: no ‘contrast’ in the skew-symmetric direction. =~ source distribution: maximum is reached for a mixing
rue value. system.

Fairly good match Gaussian model Bad match

Reprinted from J.-F. Cardoso, Proceedings of the IEEE, Vol. 9(10) 2009-25
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Contrast functions: exercises

= Show that the opposite of mutual information is a contrast
function.

— The idea is to show -I(Y) is negative and equal to zero if and only if
components of Y are independent (one will use log(u) <u-1J

m  Compute the pdf py(y) of the random vector y=Cs, where C is
an invertible matrix, as a function of the (known) pdf ps of the
random vector s, assumed with independent components

= Show that mutual information is preserved by any invertible
diagonal transform.
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Simplified criterion derived from Ml

Unknown
sources

Estimated

Mixtures sources

=  The mutual information writes:
1(Y) :ZH(Yi)—H(Y) :ZH(Yi)—H(X)—EIn\detJG\
i I

= Since H(X) does not depend on the separating system,
minimizing MI is equivalent to minimize:

J(Y):ZH(Yi)—Eln\detJG\

m This criterion is simpler, since it doesn’t require estimation of
joint pdf.
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MI and Maximum likelithood

= Asymptotically, ML tends toward:

T

L(A, ps) = %Zln ps (A%, ) —In[det Al ————E In ps (A™'x) — In[det A
t=1

= Denoting y = Al x,one can compute the KL divergence:

_ py (U)
KL(pylps)= [+ [py()In o

=—EIn pg(u)-H(Y)
=—Eln ps(u)—H(X)- In‘detA‘l‘
=—L(A, pg) +cte

= ML finds a matrix A such thaty = A1 x is as close as possible
(at the KL sense) of the hypothesized distribution of the sources.
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MI and Maximum likelithood

=  One can also consider the relationship between Ml and ML by
denoting :

— Y is the distribution with independent entries (joint pdf factorises)
with the same marginal distribution than y

— s is the hypothetized distribution of the independent sources
= Then, one can write (using information theory relationships)

KL(py|ps) = KL(py|pg)+ KL(pg|ps)

Independence of y (MI) Mismatch between
does not depend on s estimated y and the model s
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MI and Gaussianity

= Intuitively: due to Large Number Law, sum of random variables
IS more Gaussian than each random variable

= For linear mixtures: 2-stage algorithm

SO 5120 g 20 mgm YO

m The separating matrix is split in two matrices: a whitening (or
sphering) matrix W and a rotation matrix U, i.e.:

W such that Ezz' =1

= The mutual information writes, with B =1JW:
I(Y)=ZH(Y0—H(Y)=ZH(Y»@I
i i / \

i onU matrix
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MI and Gaussianity

=  Minimizing Ml is equivalent

— to minimize the sum of marginal entropies, with random variables
with normalized variances,

— to minimize gaussianity of each Y;since entropy is maximum for
Gaussian distribution

= Since Yi are unit variance random variables, on can use the
neguentropy J(Yi). Negentropy is positive and equal to O iff Yi is

Gaussian:
J(Y;) =H(Yg) —H(Y;)
D H(Y;)+cte= > (H(Y,)—H(Yq))+cte

:—ZJ(Yi)+cte

=  Minimize Gaussianity is equi\)alent to maximize neguentropy
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MI and Infomax

(@
R ;

Wil—
a—

SO [ A [ X0,

Z(t)

= B is followed by component-wise NL mappings ¥;, which are
the cumulative density functions of Y,

= Z is then uniformly distributed in [0, 1], hence: H(Z;)=cte
= The mutual information writes:
1(Y)=1(2)= ) H(Z)-H(2Z) =cte- H(2)
= Minimizing Ml of Y, [(Y) = minimizing Ml of Z, 1(2)
= maximizing joint entropy of Z, H(Z)
= Infomax algorithm: Bell and Sejnowsky (Neural Comp., 1995)
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4. Algorithms

ENE 0 EOE W R e

Nonlinear decorrelation
MI minimization
FastiCA

Joint diagonalization
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4.1. Nonlinear decorrelation

m For instance, one proposes the following algorithm:
by =by —E[T(y;)a(y;)] =g

simplest case:  f(u)=u®, g(v)=(v)

other functions: f(u) =u?®, g(v) = tanh(v)
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4.2. MIM-based algorithm

= For linear mixtures, one has to estimate B
= We compute the criterion gradient with respect to the

parameter : al
oB
= The separation matrix is updated according to:
ol
B(t+1)=B(t)—u——
(t+1) =B(t) Mg

ol
= The algorithm converges when -5 Is equal to O (on

the average), i.e. if | is minimum.
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Mutual information algorithm (1/2)

= The mutual information writes:

I(Y)=ZH(Yi)—H(Y):ZH(Yi)—H(X)Hn\detB\

= Estimation equation is then: alY)
parameters oB

= [t leads to the following equation:
aI(Y) ZaH(Y) 8In\detB\

— (0 where B represents the

—Z dIn pY (yI oy, aln\detB\_
B B

which needs estimation of pdf or score function (der. of log pdf).
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Mutual information algorithm (2/2)

S(M) 1 X =AS( 5 Y(t) = BX(t)

dIndetB| _

dB
al(Y) _Z dinpy (vi) oy;  olIndetB

- dy, 0B OB
= E[wY(Y)xT]+ B™)'

Since

)T . the derivative of Ml is:

Multiplying by BT and using y = BX,

AY) 0 Efyy (VXT1+ (BT =0

i.e. E[wy(Y)Y']+1=0
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Mutual information algorithm (2/2)

This result leads to the following estimation equations (NL
decorrelation): dIn oo (Y.
E|:— pYI(I)Y-:|:O, |¢J

dv, .
. dinpy (i) v,
— For zero-mean Gaussian sources, — ="
dyi o

l.e. the estimating equation only requires 2nd-order statistics,

— For non Gaussian sources : higher (than 2) order statistics,

— Priors or good estimates of source distribution leads to
optimal statistics ; approximation of pdf leads to different
algorithm implementations (2nd order, cumulants, etc.).
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Independence criterion: pdf estimation

= Estimation equations require pdf’'s or score functions estimates

m pdf's can be estimated using various methods

— expansion near Gaussianity: Gram-Charlier (Lacoume 91, Comon
SP 94, Yang et al. SP 98), or Edgeworth expansions

— kernel estimators (Pham IEEE Trans. SP 96, Taleb, Jutten IEEE SP
99) ... then, score functions are estimated by derivation

m Score function can be estimated directly by minimizing MSE cost
(Pham et al. EUSIPCO 92 ; Taleb, Jutten ICANN 97, IEEE SP 99)

Jw) =2y woy) - )%

) E_a*”va(vvvv’ ) g, (w. y)—w(y)j
- €| ) 2P )
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Independence criterion: pdf estimation

= Pdf estimation based on kernel estimate
— kernel estimate is a well know statistical method (Silverman, etc.)
— assuming N samples x, of the random variable X, the pdf estimation
IS: 1 N
Px (X) = NZ K (X=Xy)
n=1
— The kernel must satisfy to a few conditions, and can have different

shapes, e.g. Gaussian, triangle, square (Parzen window), etc.
— Example of Gaussian kernels:

L o = X0
J27h 2h?

B = Demonstration with different values of h (ker_est.m)

Kh(X) =
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Independence criterion: score estimation

m Score function can be estimated directly by minimizing MSE cost
(Pham et al. EUSIPCO 92 ; Taleb, Jutten ICANN 97, IEEE SP 99)

Jw) =2y woy) - )%

oJ (W Oy (W, Y) .
S ) g () ()
| - oy (W, Y) a2'/7\( (w,y)
=E W,
_WY( y) PV + yOW
. dlin '
since s, (y) =— ;); ) __ F;) Y ((yy))
N '
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has a maximum absolute value kurtosis, i.e.
a\kurt(uTz)\
ou

= Remark that, due to sphering of z, the gradient is
maximum if u Is colinear to the derivative of F(u).

= 4sign(kurt(u’' z)) IEZ(UT 2)* —3ulul*

L(u) = F(u) +l(HuH2 -1)

oL(u) _ aF(u)+2/1u L0 —>uo oF (u)
ou ou ou
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4.3. FastiCA algorithm
= Main idea for estimating one source
— consider first a whitening step, W, such thatz=W x is
spatially white and with unit variance ; U is a rotation matrix
— estimating a vector u such that the estimated source u'z



FastiICA algorithm

= We have then:

ucxEz(u'z)®-3u

= The algorithm is then the fixed-point sequence:

u(t+1) =Ez(u(t)" z)° - 3u(t)
ut+1) =u(t+1)/|u(t+1)|
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FastiICA algorithm

= More generally, with a contrast function:
F(u)=EG(u'z)
= Adding the constraint and writing the Lagrangian:
L(u) = EG(u"z)+ A(u[* -1)/2

oY) _ Ezg(u'z)+ Au

where g denotes the derivative of G
= Solving the Lagrangian by Newton method writes:

-1
u(t+1) =u(t) - {62 L(U)} oL(u)

ou? ou
=  Computing the second derivative of Lagrangian leads to the
matrix (Hessian): 5L (u)
ou®
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FastiICA algorithm

o°L(u)

ou?
= The problem is the Hessian matrix should be inverted, which is
cost computing.

= For avoiding the inversion, Hyvarinen and Oja proposed the
approximation:

—E IzTg'(uTz)}/Il

2
aaL(zu) ~Ezz Eg'(u"z)+ Al = Eg'(u" 2)I + Al since Ezz" =1
u
= Using this approximation, the approximative Newton iteration
becomes:

u(t+1) =Ezg(u'z)-Eg'(u' z)u
u(t+1) =u(t+2)/|u(t +1)
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FastiICA algorithm

= Coming back on the derivative of the contrast F(u)
oF (u)

= Ezg(u'z) =0
ou
= Denoting u'z =y, the minima of the constrast function involve
higher-order statistics:aF( )
u
=Ezg(y)=0
or Eyg(y) =0
. L . . ol(y)
= This condition is similar to the one obtained with —8y =0

= Consequently, the optimal function g is related to the unknown
score function of y
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FastICA algorithm: deflation scheme

= ldeais to extract one independent component, and then to
remove it from the mixture, etc.
= The deflation algorithm
1. Choose the number m of IC to extract, p=1
2. Initialize u, (randomly)
3. Do an one-unit iteration for computing u,,

4.Do the following (Gram-Schlmidt like) orthogonalization
p_

_ T
U, =up- E (Upu;)u;
. N
5. Normalize u, by dividing by its norm

6. If u, not converged, goto 3
7.Setp=p+landifp<m+1, goto 2, else stop.
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FastlCA algorithm: symmetric scheme

= |dea: to extract all the independent components simulataneously
= The symmetric algorithm

1. Choose the number m of IC to extract, p=1

2. Initialize u, (randomly), p =1, ...m

3. Do an iteration for computing all the u, in parallel

4. Do the parallel orthogonalization (see Hyvéarinen, Karhunen, Oja)

U= (UUT )—1/2 U
5. If not converged, goto 3, else stop

m Itis easy to check that the orthonormalization step leads to an
orthogonal matrix i.e. after orthonormalization UUT = |

Course Campinas — July 20-29, 2010 70/198




4.4. Joint diagonalization algorithms

= Coming back to decorrelation

) i b21 7
— for different variance
G . -
ratios, there is only one i ggseféirgﬁcttﬁgnmﬁzmg
Intersection between 4 matrix entries: it is the
the curves Ey,y, =0, a3, separation solution
2_
. . .- Tr
— the idea is to jointly
of .,
diagonalize the two (or s B R R E e S a T
more) covariance 2

| | | 1 | 1 1 1 |
4 08 0B 04 D2 0 02 04 06 08 H
12

matrices.
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Joint diagonalization algorithms

= Non white sources:
Es; (t)s; (t—7) = 7i(z) # 6(7)
= Non white sources with different spectra:
dzlyi(r) =y (7)
= Covariance matrix of delayed sources

Ey,(0)y,(t—7) Ey,(1)y,(t-7) )

Cy(r)=Ey(Q)y(t—-7) = (Eyg(t)yl(t—f) Ey,(t)y,(t—7)

or its symetrized version

Ey, (t)y,(t—7) (r12(7) +y21(7))/ 2)

1 -
- Cy(-7) =
o Ex(O)+Cy(Fr) ((712(T)+721(T))/2 Ey, (1), (t—7)

Course Campinas — July 20-29, 2010 72/198



Joint diagonalization algorithms

= Joint diagonalization of at least 2 (symetrized) covariance
matrices of delayed sources, with different delays (AMUSE, Tong
et al. 1990 ; SOBI, Belouchrani, Cardoso, 1995, etc.)

= Joint diagonalization of at least 2 (symetrized) covariance
matrices of non stationary sources, computed on different
windows (Matsuoka et al., 1995 ; Pham, Cardoso, 2001)

umWWW% R

W _ — Y Eee R
Wm

W() W(t+d)

A
v
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Joint diagonalization algorithms

= Algorithm principles
— a first sphering step W, corresponding to diagonalizing the

covariance matrix

Eyi(®)y:(t)  Eya(t)y,(t) Ey; 0
Cy(0) = Ey(t)y(t)" = [E L 120 B e (2)
— then, one has to determine the rotation matrix U, at higher

order. With suited parameterization, this can be done very
fast and easily, for any dimension.
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Joint diagonalization algorithms

m Parameterizing U, with Givens rotation leads to very simple
algorithms, for any dimensions :

n-1
U= ][50k 6)

i=1k>i
0 coséy, sing,
. —sing, cosg, O
0 cee 0 1

W|th G(', k’eik) =

= The idea is to estimate elementary rotations successively, by
means of Jacobi rotations, which tends to cancel off-diagonal
elements, 2 by 2
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Joint diagonalization algorithms

= Jacobi rotation: find Q, such that:
A - Qi AQ, =A

* * .. * * * cen *
* . * L

Qji Ay * N a i 0

A Ay 0 a
* * * * * *

where Q, is a Givens rotation matrix: .
It is easy to see that the product

(1 0 -0 Q,TAQ, only modify the entries
belonging only to rows i or k and
. _ columns i or k. The condition
Rowk ——: —sing cosd 0 a’y = 0 leads to a simple 2nd

L0 0 0 degree polynomial equation, and
to simple algorithms.

Rowi ——|0 cos@ siné
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Joint diagonalization algorithms

In joint diagonalization algorithms, one iteration consists in a
sweep of all the elementary Jacobi rotations, i.e. n(n - 1)/2 for a

n-dimensional matrix

The algorithm can be used :

— for any dimension (just the number of elementary rotations in each
sweep changes),

— for matrices computed as covariance matrices of delayed non white
signals (SOBI or AMUSE), of non stationary signals on different
windows, or of matrices deduced from 4th-order cumulant tensor
(JADE),

— in the time domain as well as in the frequency domain, since linear
relation is preserved by Fourier transform:

X(t) = As(t) > X(v) = AS(V)
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B« B+06B
B« (I+¢)B
= The adaptation scheme is related to the optimization of a criterion

= In this purpose, we have to compute the gradient of the criterion
for the multiplicative scheme. It has been called “relative
gradient”.

= Note that Amari and Cichocki obtained the same results but with
a quite different approach, and called “natural gradient”.
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Equivariance principle

= The speed and performance of first ICA algorithms were
depending on the mixing matrix A.

= Instead of considering additive adaptation scheme, Cardoso and
Laheld (IEEE SP 1996) proposed multiplicative scheme:



Equivariance principle

= Denote J(y) the criterion to minimize. In multiplicative scheme,
we want : -

T
J(B+£B)=J(B)+1r (2_;) aB}ouB)

_J(B)+tr (a" BT) 8}0(83)

0B
= The variation is minimal if;
0J
€= aB —B' = Vi d(y) ==H(y)

Note H(y) is not the entropy !
= It leads to the following iteration:
B« (I-4H(y))B
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global system C, and not on A. The mixing matrix only defines
(according to the initial value of B) the initial point of the iteration

since;:
CO = BoA

As a result, the performance of the algorithm does not depend on
the mixing matrix A. In practice, the equivariance property is then
very interesting.
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Why Equivariance ?
= Multiplying the following iteration by A, the mixing matrix, and
denote C = BA:
By =(1-xH(y))B;
Bi.aA=(1-4H(y))BA
Ciyy = (1- #H(C3))C,
= The last rule shows that the trajectory does only depend on the



5. Convolutive mixtures

NN B N W R e

Time domain
Frequency domain
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Convolutive mixtures

= Most of the works only concern 2 sources and 2 sensors

= Mainly 3 approaches:
— methods based on linear time invariant filters,
— methods based on a frequency approach,
— methods in frequency-time domain.

= Independence x(t) and y(t) now concerns independence
between random processes, i.e. independence between any
part of the infinite series of samples

\i:tz j.()’(tl),'")/(tz)) and ):t3:t4 j'(x(ts)"“x(u))
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5.1. Convolutive mixtures (1/7) - Subspace

= Method based on linear time invariant filters
= The convolutive mixture
X(t) = A(t) =s(t) + n(t)
IS modelled in the z-domain by:

x(n) = N2) s(n)

m  Subspace approach consists in writing the mixing:
L L
x(n)= M@)s(n) =) al)s(n-i), x(n+1)=Y a(i)s(n-i+1),-
i=0 i1=0

For T samples

x(n) a@ al® - aL) 0 0 O s(n)

x(n-1) 0O a0 ad) --- alL) 0 O s(n—-1)
. S I DU z
. X(n-T) 0 0 0 a0 a(@) a(L) ){s(n-T -1L)



Convolutive mixtures (2/7) - Subspace

Under mild conditions on the mixing filter and on the observation
number, source can be separated

The main drawbacks are:
— large matrice has to be handled
— the sensor number must be larger than the source number

For more detalls, see Gurelli, Nikias 1995;: Moulines et al., IEEE SP
1995 : Abed-Meraim et al., IEEE IT 1997: Gorokhov, Loubaton,
IEEE CAS 1997 and SP 1999: Mansour et al. IEEE SP 2000, etc.
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Convolutive mixtures (3/7) - LTI filters

m Methods based on linear time invariant filters

= The convolutive mixture
X(t) = A(t) *s(t) +n(t)
IS modelled in the z-domain by:

x(n) = N2) s(n)

= The methods consist in estimating an inverse matrix B(z) (up to
PD(2)).
m For stability reason, A(z) have to be phase minimal.
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Convolutive mixtures (4/7) - LTI filters

= Due to the indeterminacies (D(z)), one can propose simplified

mixtures:
A(2) :( 1 A&Lz(z)j
Ax1(2) 1

This model is realist, if one source is dominant on each sensor
= Then, one can also impose structural constraints on B(z):
B(Z):( 1 Blz(z)j B(2) = 1 ( 1 C12(Z)j
B,,(2) 1 1-C2(2)Cp(2)\ C1(2) 1
= With the 1st constraint a post-processing must be applied, since, at
separation (when outputs are independent):

- 1-Ap(2)Axu(2) 0
B(z)A(z) =
(AL ( 0 1—A12<z)A21(z)]
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Convolutive mixtures (5/7) - LTI filters

Optimization of B(z) can be done according to various methods:
— cancelling high-order cross-moments (Nguyen Thi, Jutten, SP 1995)
by (k) = by (k) = 42EF (y; (M) y; (N —K)

— cancelling 4-th order cross-cumulants (Nguyen Thi, Jutten, SP 1995)
by; (k) = by; (k) — £Cum l’i (n),yi(n),yi(n),y;(n—k)

— Minimizing the sum of squared cumulants (Simon et al., ICASSP 98)

— cancelling cross-trispectra (Yellin, Weinstein, IEEE SP, 1994)

— partial approximate joint diagonalisation (PAJOD) of cross-cumulant
matrices (Comon et al. ICA 2001)
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Convolutive mixtures (6/7) - LTI filters

Another simple approach, based on linear prediction, is possible for
MA model of mixtures:

x(n) = Ays(n) +ZAkS(n K)

Assuming A, invertible and denotlng A =AA and s(n—k)=Ags(n—k)
L
x(n) =s(n)+ > Ays(n-k)

Matrices A, can be estimated, at the second order by linear

prediction (Comon, TS 1990 in French ; AbedMeraim et al. IEEE SP
1997)

= Then, the following equation (corresponding to instantaneous
-mixtures) s(n—k) = Ays(n—K) is solved by BSS at higher order
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Convolutive mixtures (7/7) - Frequency

m Taking short-term FT, the model x(t) = A(t) *s(t)
becomes: x(v,t) = A(v)s(v,1)
= Around a frequency v,, one has
A(v)=A(v,) = cst

= Then, on each narrowband, the problem reduces to a simple BSS
problem in instantaneous mixtures, with complex-valued entries

= For reconstructing the large band sources, the reconstruction
process must take into account the possible scale and
permutation indeterminacies in each narrowband

= Various solutions, based on continuity and correlations between
sources from a channel to the neighbors have been proposed:
Capdevielle et al., ICASSP 94 ; Wu, Principe, ICA'99 ; Mejuto et
al., ICA 2000 ; Dapena, Serviere, ICA 2001, Pham, Serviere,
ICAOQ3, etc.)
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