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1. The problem of source separation
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Source separation
Motion decoding

Blind source separation and ICA
Undeterminacies
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1.1. Source separation: the problem

= The signal received by a sensor (electrode, antenna,
microphone, etc.) is an intricated signal.
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Is it possible to retrieve the different signals (sources)
from the mixture ? If yes, how ?
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Source separation: main idea

= |tis possible using a few observations
— more sensors than sources

— different mixtures (observations) (% > gj

- asy(t) + bs, (t)
51 (t) ,
S2 (t)% /\ O
Csy (t) +ds;, ()

B = Spatial diversity
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Source separation with priors

= With priors on sources
— different frequency ranges: classical simple filtering,

— one reference (Widrow-Hoff method): adjust k so that the
error 1S decorrelated from the reference

X, (t) = as; (t) +bs, (1) + as (t) +(b—k)s; (t)

- E[(as, (t) + (b—k)s, (t))s, (1)] =0
E[x, (t)s, ()] - KE[s3 ()] =0
ie. k=E[x(t)s,(t)]/E[s5(t)]

S, (t)

2 = Butif sources have same frequency ranges, and if

there is no reference ?
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1.2. Origin: Motion decoding
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Can one retrieve p(t) et v(t) from the mixtures f,(t) and f;(t) ?
There are some biological evidences...
But, under what conditions ? And how ?
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1.3. BSS problem

= Assumption on the mixture model F
— linear instantaneous (without memory) model,
— linear convolutive (with memory) model,
— nonlinear model.

= One chooses a separation model G, suited to the
mixture model

Unknown
sources

Estimated

Mixtures sources

Tsamples:t=1, ...T
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|CA method

m Assume the model F is known, and G is suited to F

= Without priors, the problem is impossible

= A possible source prior: statistical independence
— Independent Component Analysis: ICA method,
— Idea: estimate G so that the Y,'s become independent
— since prior is very weak, the problem is called blind

Estimated
sources

Unknown

sources Mixtures
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Linear case: can BSS be solved ?

= Impossible (Darmois 1953) for
— Independent identically distributed (iid) Gaussian sources

m Possible for
— Iid non Gaussian sources

— Gaussian non iid sources, e.g. non temporally independent
(colored), or non identically distributed (statistics is
changing: nonstationarity)

Unknown
sources

Estimated

Mixtures sources
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|CA: linear Iinstant. mixtures

= Question :Y; Independent, Vi< Y =S?

= Theoretical results (Comon, Signal Processing 1994)

— Let be x(t) = A s(t) a linear instantaneous regular mixture (A
IS a regular matrix) of independent sources s(t), whose at
most one is Gaussian, signals y(t) = B x(t) are independent
iff BA =DP

— Independence is equivalent to separation up to scale and
permutation indeterminacies.

Estimated
sources

Unknown
sources

Mixtures
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|CA: linear convol. mixtures

= Theoretical results for convolutive mixtures (Weinstein,
Yellin, IEEE SP, 94 ; Nguyen, Jutten, SP, 1995).

— Let be x(t) a linear convolutive mixture (A(z) is an invertible
filter matrix) of independent sources, whose at most one is
Gaussian, signals y(t)=[B(z)]x(t) are independent iff
B(z)A(z) = D(z2)P.

Independence is equivalent to separation up to filter and
permutation undeterminacies.

Unknown
sources

Estimated

Mixtures sources
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|CA: nonlinear mixtures

m Theoretical results for nonlinear mixtures

— For general nonlinear mixtures, Y independence does not
Insure source separation (Darmois, 1953 ; Hyvarinen,
Pajunen,1998).

— Particular nonlinear mixtures are separable, e.g. the post-
nonlinear models (Taleb, Jutten, IEEE SP 1999 ; Babaie-
Zadeh, Jutten, Eusipco 2002 ; Jutten, Babaie-Zadeh,
Hosseini, SP 2004 ; Achard, Jutten, IEEE SPL 2005).

Estimated
sources

Unknown

sources Mixtures
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|CA: under- or over-determined

= More mixtures than sources: over-determined

mixtures

there is solution provided than the mixture is invertible

m More sources than mixtures:under-determined

mixtures

there i1s no solution,

even, If the mixture has been estimated or is known, since it
is not invertible, sources cannot be deduced: “identification
of F” and “restoration of sources” are two different problems,

for linear mixtures, one can show (Taleb, Jutten, ICASSP
99) that the sources are known up to a random vector !

Solution if extra priors, e.g. discrete or sparse sources
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ICA: linear noisy mixtures

= The model is:
X(t) = As(t) + b(t)

where b(t) is assumed non correlated with s(t).

= Basically, there are two problems:

— noise (except if it is Gaussian, and ICA use higher-order
statistics) implies a biased estimation of B = A1

— even if B is perfectly estimated, i.e. B = AL, the estimated

sSources are.
v =50 A b0

= The noise can be amplified.
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1.4. Understand the undeterminacies

= Scale and permutation undeterminacies can be
understood according to various ways.

m For a linear model, the sensor | receives the mixture :

X;i (1) = 85181 (1) + @58, (1) +... + @8, (1)

:Zaijsj(t)
j

o eo
j

= With independence: if y(t) has independent
components, then DPy(t) too.
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Conseguence of undeterminacies

m Undeterminacies mean that we cannot estimate the

power of the sources (in linear mixtures)

= As a conseqguence,

we cannot estimate n parameters among the n x n of the
mixing matrix,

we can then, without loss of generality, impose the main
diagonal of A to be equal to 1

we also can parameterize the separating matrix B with fixing
n parameters, or with column normalization

we can arbitrarily fix the power of estimated sources,
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2. Dependence measures
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Independence definition
Dependence measures
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2.1. Supervised or unsupervised

= |ICA Is based on source independence

— Independence (or dependence) measure does not need
external information, i.e. no supervisor

— ICA is then basically an unsupervised estimation method

— itis also called “blind” like in similar deconvolution or
equalization problems

= Beyond ICA, one can look for using priors

B C In this Section, one focuses on independence
measure for ICA
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2.1. Independence definitions

= With words...

= From probability
— for 2 random variables:

Py,y, (U, Uz) = Py, (Uy) Py, (Uy)

— for N random variables:
Py,y,..v, (U) = Py, (U) py, (Uz)... Py (Uy)

N
= H Py, (Uy)
k=1

= Problem: equality of multivariate functions
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Independence definitions

m First characteristic functions

— 1t is the inverse Fourier transform of the probability density
function:

p(v) = Elexp(ju)] = [p(u)exp(ju)du
p(v) = Elexp(ivTu)]= |-+ [p)exp(jvTu)du

— as a consequence, there is the same information in the pdf
and in the characteristic function.

= Second characteristic function
— it is the log of the first characteristic function:

#(v) =loge(v)
#(v) = logp(v)
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Independence definitions

= From the definition (random variable):

/ Efexp(jw)]= jp(uu

1 for v =0 $(v) = logp(v) \ 1 for v =0
= The SCF is equal to O for v = 0.

= One can show the SCF is continuous near 0. Then, it
can be expanded in Taylor series.
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Independence definitions

= Cumulant definition
— 1t is the coefficients of the expansion of the SCF:

+00 >
§)=logp() = K, 44
p=1 -

= In other words, the order-p cumulant is:

d"g(v)

dyP

rp=(=1)°

v=0
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Independence definitions

= EXxercice: compute the 2nd, 3rd and 4th order
cumulants of a zero-mean variable

¢’

p(v)=logp(v) =) Kk, =
p=1

p!
= Write the Taylor expansion:

2
V

2!

v=0

ding(v)|  d*Ing(v)
d

2
0 dv

Inp(v) =In@(0) +

I and identify to the above expansion.
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Independence definitions

= Independence and characteristic functions
Pv.y,..v, (U) = Py, (U1) Py, (U2)... Py, (Uy)
p(v) =p(v)o(vy) - o(vy)
logp(v) =loge(vy) +loge(v,) +---+loge(vy)
p(v) =g(v)) + o)+ +4(vy)

= Independence = cancellation of all cross-cumulants

considering Taylor expansion near 0, since right-side term
does not content cross-terms, contrary to the left-side term

m Problem: there are an infinite number of cumulants !
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Independence definitions

= p-order cumulants are function of statistical moments
up to order p

m The first cumulants for a zero mean variable are:
K1=p4 =0
Ko = Hy
K3 = H3
Ky = Mg =3t

B where up =E[X "1 is the p-order moment.
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2.2. Dependence measures

= Kullback-Leibler divergence
f(u)
KL(f[g)=[...| f ()l d
(f]a) j j (u) %9 M

= Itis areal number which measures the divergence
between two distributions
= KL divergence is positive and vanishes if and only if

f = g (this is easy to show using Jensen inequality)
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2.2. Dependence measures

= Kullback-Leibler divergence between the joint pdf and
the product of marginal pdfs of the random vector Y

KL(pv [T py) = [ [ov @1og ¥ ay

H Py, (U;)

= The above divergence is positive and vanishes if and

only if Y has independent components, I.e.:
Py,y,..v, (U;V) = py (U) Py, (V)... Py, (V)

N
= H Py, (V)
k=1

= This KL divergence is equal to Mutual Information I(Y)
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Dependence measures

= Mutual information (MI)
1(Y) = ij(u)Iog Py 4,

H Py, (U;)

N
=2 H(%)-H(Y)
i=1

where the marginal and joint differential entropies are
defined as:

H(Y) = [y, (Wlog py ()du

H(Y) == [+ [py (W)Tog py (W)
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Dependence measures

= Mutual information (MI)

N
=1
H(Y) =[Gy, Wlog py W)y, H(Y) == [ {py (Wlog py Wdu

= Problem: estimation of Ml requires estimation of joint
and marginal probability density functions

Course Campinas — July 20-29, 2010 30/198



Simpler dependence measures ?

= Decorrelation = second order independence

decorrelaﬁo%independeme
independernce = decorrelation

= We will see later that, using algebraic arguments,
decorrelation is not sufficient

= However, decorrelation is a first step toward
Independence...
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